

International Society for Rock Mechanics

ISRM Book Series

Time-Dependency in Rock Mechanics and Rock Engineering

Ömer Aydan

2

Table of contents

	Abo Ack	ut the author nowledgements	ix vi
	mon	now reagoniente	AI
I	Intr	oduction	I
2	Tim	e-dependent (rate-dependent) behaviour of rocks	5
	2.1	Introduction	5
	2.2	Creep behaviour and testing techniques	6
		2.2.1 Laboratory creep testing devices	7
		2.2.2 Laboratory creep tests	9
	2.3	Rate-dependency of rocks and testing	19
		2.3.1 Low-rate testing of rocks	19
		2.3.2 High-rate testing of rocks	19
	2.4	Correlations between rate-dependent and creep tests	24
	2.5	Constitutive modeling	27
		2.5.1 Uniaxial creep laws	27
		2.5.1.1 Empirical creep laws	27
		2.5.1.2 Simple rheological models for creep response	28
		2.5.2 Multi-dimensional constitutive laws	38
		2.5.2.1 Linear constitutive laws	38
		2.5.2.2 Non-linear behaviour (elasto-plasticity and	
		elasto-visco-plasticity)	39
	2.6	Correlation between compression creep tests and impression	
		creep tests	47
		2.6.1 Empirical correlations	47
		2.6.2 Analytical correlations	47
		2.6.3 Numerical studies on correlations between experimental techniques	49
	2.7	Creep experiments on Oya tuff	54
		2.7.1 Geology and stability problems of underground quarries	
		in Ova region	54
		2.7.2 Short term physical and mechanical properties of	
		Oya tuff	56
		2.7.3 Brazilian tensile creep experiments	60
		2.7.4 Impressions creep experiments	63

vi Table of contents

ľ

		2.7.5	Uniaxial	creep experiments	6.		
		2.7.6	Compari	isons of experiments	6		
	2.8	8 Applications of the long term response and stability of rock					
		engine	ering struc	ctures	6		
		2.8.1	Abandor	ned room-pillar mines	6		
		2.8.2	Abandor	ned room and pillar quarries of Oya tuff	72		
		2.8.3	Man-ma	de natural underground openings in			
			Cappado	ocia region	72		
		2.8.4	Applicat	ion to Tawarazaka tunnel	78		
		2.8.5	Applicat	ions to underground power house	82		
		2.8.6	Applicat	ions to foundations	83		
3	Wa	ter mig	gration i	n soft rocks and its effects on the			
	res	ponse	of rock s	structures	87		
	3.1	Introd	uction		87		
	3.2	Model	ing of wat etric chang	er absorption/desorption processes and associated ges in rocks	88		
		3.2.1	Mechani	cal modeling	88		
		3.2.2	Finite ele	ement modeling	89		
	3.3	Moistu	ire migrati	ion process and volumetric changes	89		
		3.3.1	Drying to	esting procedure	90		
		3.3.2	Saturatio	on testing technique	94		
		3.3.3	X-Ray C	omputed Tomography (CT) scanning technique	95		
	3.4	Swellin	ng-shrinka	ge process	98		
		3.4.1	Shrinkag	e process	98		
		3.4.2	Swelling	process	99		
	3.5	Materi	al propert	y changes and degradation	104		
	3.6	Applic	ations	2.5.1 University and parts in the second	107		
		3.6.1	Breakout	formation in rocks due to moisture loss	107		
		3.6.2	Tunnelin	g in swelling rocks	109		
		3.6.3	Evaluatio	on of long term creep-like deformation			
			of rock s	lopes	112		
			3.6.3.1	Analytical model and its application	112		
			3.6.3.2	Semi-infinite multi-layer finite element model			
				and its application	115		
			3.6.3.3	Implementation in discrete finite element method			
				(DFEM) and analyses	116		
4	The	rmo-m	echanic	al behaviour of rocks and heat			
	tran	sport	in rocks		123		
	4.1	Introdu	action		123		
	4.2	Mecha	nical mod	eling heat transport in rocks	123		
	4.3	Numer	rical mode	ling of thermo-mechanical responses of rocks	124		
		4.3.1	Weak for	m formulation	124		
		4.3.2	Discretiza	ation in time domain	125		
	4.4	Therm	al properti	ies of rocks and their measurements	126		
		4.4.1	Definition	n of fundamental parameters	127		

			Table of conte	nts vii
	-	4.4.2	Physical model of experimental set-up	128
		4.4.3	Experimental procedure	130
	4.5	Applic	ations	133
		4.5.1	Temperature evolution in rock due to hydration of adjacent	
			concrete lining	133
		4.5.2	Underground cavern in rock	137
		4.5.3	Temperature distribution in the vicinity of geological	
			active faults	140
	Hyd	romed	hanics of rocks and rock engineering structures	145
	5.1	Introd	uction	145
	5.2	Funda	mental equation of fluid flow in porous media	146
		5.2.1	Special form of governing equation	147
		5.2.2	Governing equations of fluid in reservoirs attached	
			to sample	148
	5.3	Permea	ability characteristics of rocks and discontinuities	148
		5.3.1	Some considerations on Darcy law for rocks and	
			discontinuities	148
		5.3.2	Transient pulse test	153
		5.3.3	Falling head tests	157
	5.4	Some s	specific simulations and applications to actual experiments	160
		5.4.1	Some specific simulations	160
		5.4.2	Applications to actual permeability tests	163
	5.5	Mecha	inical coupling effect of groundwater on rocks and	
		discon	tinuities	167
		5.5.1	Theoretical formulation	167
		5.5.2	Theoretical modelling of tilting tests	168
		5.5.3	Tilting experiments	172
		5.5.4	Tests on wedge blocks	172
	5.6	Model	ing structures in rocks subjected to ground-water	
		fluctua	ations	176
		5.6.1	Theoretical and finite element modeling	176
		5.6.2	Applications to pumped storage power house project	177
5	The	rmo-h	ydro-diffusion behaviour of rocks	181
	6.1	Introd	uction	181
	6.2	Mecha	anical modeling	181
		6.2.1	Fundamental equations	182
		6.2.2	Constitutive laws	183
		6.2.3	Simplified form of fundamental equations	184
	6.3	Finite	element formulation	185
		6.3.1	Weak forms of fundamental equations	185
		6.3.2	Discretization of weak forms	186
			6.3.2.1 Discretization in physical space	186
			6.3.2.2 Discretization in time domain	188
	6.4	Exam	ples and discussions	188
	6.5	Conch	uding remarks	193

キキシーで

7	The	rmo-hydro-mechanical behaviour of rocks	195
	7.1	Introduction	195
	7.2	Mechanical modeling based on mixture theory	195
		7.2.1 Preliminaries	196
		7.2.2 Definitions of thermo-hydro-mechanical quantities for	
		fluid-saturated porous media	198
		7.2.3 Mass conservation law for two-phase materials	200
		7.2.4 The equations of momentum balance	201
		7.2.5 Energy conservation law	202
		7.2.6 Constitutive laws	203
		7.2.7 Final governing equations	205
	7.3	Finite element formulation	206
		7.3.1 Weak forms of fundamental equations	206
		7.3.2 Discretization of weak forms	207
		7.3.2.1 Discretization in physical space	207
		7.3.2.2 Discretization in time domain	209
	7.4	Examples and discussions	210
		7.4.1 Example of buried heat source in fully saturated shallow	
		rock mass	210
		7.4.2 Analyses of shallow and deep underground waste disposal	
		repositories	213
	7.5	Analysis for actual ground	214
	7.6	Concluding remarks	221
		Appendix	221
		extantional	
8	Con	clusions	223
Ap	pendi	ix: Publications related to the book	225
Re	ferenc	ces	233
Su	bject i	index	241